FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Evaluating the diagnostic accuracy of WHO-recommended treatment decision algorithms for childhood tuberculosis using an individual person dataset: a study protocol

Por: Olbrich · L. · Larsson · L. · Dodd · P. · Palmer · M. · Nguyen · M. H. T. N. · dElbee · M. · Hesseling · A. C. · Heinrich · N. · Zar · H. J. · Ntinginya · N. E. · Khosa · C. · Nliwasa · M. · Verghese · V. · Bonnet · M. · Wobudeya · E. · Nduna · B. · Moh · R. · Mwanga · J. · Mustapha · A. · B
Introduction

In 2022, the WHO conditionally recommended the use of treatment decision algorithms (TDAs) for treatment decision-making in children

Methods and analysis

Within the Decide-TB project (PACT ID: PACTR202407866544155, 23 July 2024), we aim to generate an individual-participant dataset (IPD) from prospective TB diagnostic accuracy cohorts (RaPaed-TB, UMOYA and two cohorts from TB-Speed). Using the IPD, we aim to: (1) assess the diagnostic accuracy of published TDAs using a set of consensus case definitions produced by the National Institute of Health as reference standard (confirmed and unconfirmed vs unlikely TB); (2) evaluate the added value of novel tools (including biomarkers and artificial intelligence-interpreted radiology) in the existing TDAs; (3) generate an artificial population, modelling the target population of children eligible for WHO-endorsed TDAs presenting at primary and secondary healthcare levels and assess the diagnostic accuracy of published TDAs and (4) identify clinical predictors of radiological disease severity in children from the study population of children with presumptive TB.

Ethics and dissemination

This study will externally validate the first data-driven WHO TDAs in a large, well-characterised and diverse paediatric IPD derived from four large paediatric cohorts of children investigated for TB. The study has received ethical clearance for sharing secondary deidentified data from the ethics committees of the parent studies (RaPaed-TB, UMOYA and TB Speed) and as the aims of this study were part of the parent studies’ protocols, a separate approval was not necessary. Study findings will be published in peer-reviewed journals and disseminated at local, regional and international scientific meetings and conferences. This database will serve as a catalyst for the assessment of the inclusion of novel tools and the generation of an artificial population to simulate the impact of novel diagnostic pathways for TB in children at lower levels of healthcare. TDAs have the potential to close the diagnostic gap in childhood TB. Further finetuning of the currently available algorithms will facilitate this and improve access to care.

Application of machine learning in early childhood development research: a scoping review

Por: Benson · F. N. · Chelangat · D. · Brink · W. · Mwangala · P. N. · Waljee · A. K. · Moyer · C. A. · Abubakar · A.
Background

Early childhood development (ECD) lays the foundation for lifelong health, academic success and social well-being, yet over 250 million children in low- and middle-income countries are at risk of not reaching their developmental potential. Traditional measures fail to fully capture the risks associated with a child’s development outcomes. Artificial intelligence techniques, particularly machine learning (ML), offer an innovative approach by analysing complex datasets to detect subtle developmental patterns.

Objective

To map the existing literature on the use of ML in ECD research, including its geographical distribution, to identify research gaps and inform future directions. The review focuses on applied ML techniques, data types, feature sets, outcomes, data splitting and validation strategies, model performance, model explainability, key themes, clinical relevance and reported limitations.

Design

Scoping review using the Arksey and O‘Malley framework with enhancements by Levac et al.

Data sources

A systematic search was conducted on 16 June 2024 across PubMed, Web of Science, IEEE Xplore and PsycINFO, supplemented by grey literature (OpenGrey) and reference hand-searching. No publication date limits were applied.

Eligibility criteria

Included studies applied ML or its variants (eg, deep learning (DL), natural language processing) to developmental outcomes in children aged 0–8 years. Studies were in English and addressed cognitive, language, motor or social-emotional development. Excluded were studies focusing on robotics; neurodevelopmental disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder and communication disorders; disease or medical conditions; and review articles.

Data extraction and charting

Three reviewers independently extracted data using a structured MS Excel template, covering study ML techniques, data types, feature sets, outcomes, outcome measures, data splitting and validation strategies, model performance, model explainability, key themes, clinical relevance and limitations. A narrative synthesis was conducted, supported by descriptive statistics and visualisations.

Results

Of the 759 articles retrieved, 27 met the inclusion criteria. Most studies (78%) originated from high-income countries, with none from sub-Saharan Africa. Supervised ML classifiers (40.7%) and DL techniques (22.2%) were the most used approaches. Cognitive development was the most frequently targeted outcome (33.3%), often measured using the Bayley Scales of Infant and Toddler Development-III (33.3%). Data types varied, with image, video and sensor-based data being most prevalent. Key predictive features were grouped into six categories: brain features; anthropometric and clinical/biological markers; socio-demographic and environmental factors; medical history and nutritional indicators; linguistic and expressive features; and motor indicators. Most studies (74.1%) focused solely on prediction, with the majority conducting predictions at age 2 years and above. Only 41% of studies employed explainability methods, and validation strategies varied widely. Few studies (7.4%) conducted external validation, and only one had progressed to a clinical trial. Common limitations included small sample sizes, lack of external validation and imbalanced datasets.

Conclusion

There is growing interest in using ML for ECD research, but current research lacks geographical diversity, external validation, explainability and practical implementation. Future work should focus on developing inclusive, interpretable and externally validated models that are integrated into real-world implementation.

❌