FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerTus fuentes RSS

Evaluating the accuracy of artificial intelligence-powered chest X-ray diagnosis for paediatric pulmonary tuberculosis (EVAL-PAEDTBAID): Study protocol for a multi-centre diagnostic accuracy study

Por: Aurangzeb · B. · Robert · D. · Baard · C. · Qureshi · A. A. · Shaheen · A. · Ambreen · A. · McFarlane · D. · Javed · H. · Bano · I. · Chiramal · J. A. · Workman · L. · Pillay · T. · Franckling-Smith · Z. · Mustafa · T. · Andronikou · S. · Zar · H. J.
Introduction

Diagnosing pulmonary tuberculosis (PTB) in children is challenging owing to paucibacillary disease, non-specific symptoms and signs and challenges in microbiological confirmation. Chest X-ray (CXR) interpretation is fundamental for diagnosis and classifying disease as severe or non-severe. In adults with PTB, there is substantial evidence showing the usefulness of artificial intelligence (AI) in CXR interpretation, but very limited data exist in children.

Methods and analysis

A prospective two-stage study of children with presumed PTB in three sites (one in South Africa and two in Pakistan) will be conducted. In stage I, eligible children will be enrolled and comprehensively investigated for PTB. A CXR radiological reference standard (RRS) will be established by an expert panel of blinded radiologists. CXRs will be classified into those with findings consistent with PTB or not based on RRS. Cases will be classified as confirmed, unconfirmed or unlikely PTB according to National Institutes of Health definitions. Data from 300 confirmed and unconfirmed PTB cases and 250 unlikely PTB cases will be collected. An AI-CXR algorithm (qXR) will be used to process CXRs. The primary endpoint will be sensitivity and specificity of AI to detect confirmed and unconfirmed PTB cases (composite reference standard); a secondary endpoint will be evaluated for confirmed PTB cases (microbiological reference standard). In stage II, a multi-reader multi-case study using a cross-over design will be conducted with 16 readers and 350 CXRs to assess the usefulness of AI-assisted CXR interpretation for readers (clinicians and radiologists). The primary endpoint will be the difference in the area under the receiver operating characteristic curve of readers with and without AI assistance in correctly classifying CXRs as per RRS.

Ethics and dissemination

The study has been approved by a local institutional ethics committee at each site. Results will be published in academic journals and presented at conferences. Data will be made available as an open-source database.

Study registration number

PACTR202502517486411

COVID-19-related research data availability and quality according to the FAIR principles: A meta-research study

by Ahmad Sofi-Mahmudi, Eero Raittio, Yeganeh Khazaei, Javed Ashraf, Falk Schwendicke, Sergio E. Uribe, David Moher

Background

According to the FAIR principles (Findable, Accessible, Interoperable, and Reusable), scientific research data should be findable, accessible, interoperable, and reusable. The COVID-19 pandemic has led to massive research activities and an unprecedented number of topical publications in a short time. However, no evaluation has assessed whether this COVID-19-related research data has complied with FAIR principles (or FAIRness).

Objective

Our objective was to investigate the availability of open data in COVID-19-related research and to assess compliance with FAIRness.

Methods

We conducted a comprehensive search and retrieved all open-access articles related to COVID-19 from journals indexed in PubMed, available in the Europe PubMed Central database, published from January 2020 through June 2023, using the metareadr package. Using rtransparent, a validated automated tool, we identified articles with links to their raw data hosted in a public repository. We then screened the link and included those repositories that included data specifically for their pertaining paper. Subsequently, we automatically assessed the adherence of the repositories to the FAIR principles using FAIRsFAIR Research Data Object Assessment Service (F-UJI) and rfuji package. The FAIR scores ranged from 1–22 and had four components. We reported descriptive analysis for each article type, journal category, and repository. We used linear regression models to find the most influential factors on the FAIRness of data.

Results

5,700 URLs were included in the final analysis, sharing their data in a general-purpose repository. The mean (standard deviation, SD) level of compliance with FAIR metrics was 9.4 (4.88). The percentages of moderate or advanced compliance were as follows: Findability: 100.0%, Accessibility: 21.5%, Interoperability: 46.7%, and Reusability: 61.3%. The overall and component-wise monthly trends were consistent over the follow-up. Reviews (9.80, SD = 5.06, n = 160), articles in dental journals (13.67, SD = 3.51, n = 3) and Harvard Dataverse (15.79, SD = 3.65, n = 244) had the highest mean FAIRness scores, whereas letters (7.83, SD = 4.30, n = 55), articles in neuroscience journals (8.16, SD = 3.73, n = 63), and those deposited in GitHub (4.50, SD = 0.13, n = 2,152) showed the lowest scores. Regression models showed that the repository was the most influential factor on FAIRness scores (R2 = 0.809).

Conclusion

This paper underscored the potential for improvement across all facets of FAIR principles, specifically emphasizing Interoperability and Reusability in the data shared within general repositories during the COVID-19 pandemic.

❌