FreshRSS

🔒
❌ Acerca de FreshRSS
Hay nuevos artículos disponibles. Pincha para refrescar la página.
AnteayerInternacionales

Construction and Evaluation of a Novel Nomogram for Predicting Dual Dimensional Frailty in Older Maintenance Haemodialysis Patients

ABSTRACT

Objective

To construct and evaluate a novel nomogram for predicting the risk of dual dimensional frailty (comorbidity between physical frailty and social frailty) in older maintenance haemodialysis.

Methods

A cross-sectional investigation was conducted. A total of 386 older MHD patients were recruited between September and December 2024 from four haemodialysis centres in four tertiary hospitals in Sichuan Province, China. LASSO regression and binary logistic regression were employed to determine the predictors of dual dimensional frailty. The prediction performance of the model was evaluated by discrimination and calibration. The decision curve was utilised to estimate the clinical utility. Internal validation with 1000 bootstrap samples was conducted to minimise overfitting.

Results

In the overall sample (386 cases), a total of 92 (23.8%) of patients exhibited dual dimensional frailty. Five relevant predictors, including physical activity, self-perceived health status, ADL impairment, malnutrition, and self-perceptions of aging, were identified for constructing the nomogram. Internal validation indicated excellent discriminatory power and calibration of the model, while the clinical decision curve demonstrated its remarkable clinical utility.

Conclusions

The novel nomogram constructed in this study holds promise for aiding healthcare professionals in identifying physical and social frailty risks among older patients on maintenance haemodialysis, potentially informing early and targeted interventions.

Relevance to Clinical Practice

This nomogram enables nurses to efficiently stratify dual-dimensional frailty risk during routine assessments, facilitating early identification of high-risk patients. Its visual output can guide tailored interventions, such as exercise programmes, nutritional support, and counselling, while optimising resource allocation.

Patient or Public Contribution

Data were collected from self-reported conditions and patients' clinical information.

Reporting Method

STROBE checklist was employed.

Development of a Deep Learning‐Based Model for Pressure Injury Surface Assessment

ABSTRACT

Aim

To develop a deep learning-based smart assessment model for pressure injury surface.

Design

Exploratory analysis study.

Methods

Pressure injury images from four Guangzhou hospitals were labelled and used to train a neural network model. Evaluation metrics included mean intersection over union (MIoU), pixel accuracy (PA), and accuracy. Model performance was tested by comparing wound number, maximum dimensions and area extent.

Results

From 1063 images, the model achieved 74% IoU, 88% PA and 83% accuracy for wound bed segmentation. Cohen's kappa coefficient for wound number was 0.810. Correlation coefficients were 0.900 for maximum length (mean difference 0.068 cm), 0.814 for maximum width (mean difference 0.108 cm) and 0.930 for regional extent (mean difference 0.527 cm2).

Conclusion

The model demonstrated exceptional automated estimation capabilities, potentially serving as a crucial tool for informed decision-making in wound assessment.

Implications and Impact

This study promotes precision nursing and equitable resource use. The AI-based assessment model serves clinical work by assisting healthcare professionals in decision-making and facilitating wound assessment resource sharing.

Reporting Method

The STROBE checklist guided study reporting.

Patient or Public Contribution

Patients provided image resources for model training.

❌